27 research outputs found

    Correlative Framework of Techniques for the Inspection, Evaluation, and Design of Micro-electronic Devices

    Get PDF
    Trillions of micro- and nano-electronic devices are manufactured every year. They service countless electronic systems across a diverse range of applications ranging from civilian, military, and medical sectors. Examples of these devices include: packaged and board-mounted semiconductor devices such as ceramic capacitors, CPUs, GPUs, DSPs, etc., biomedical implantable electrochemical devices such as pacemakers, defibrillators, and neural stimulators, electromechanical sensors such as MEMS/NEMS accelerometers and positioning systems and many others. Though a diverse collection of devices, they are unified by their length scale. Particularly, with respect to the ever-present objectives of device miniaturization and performance improvement. Pressures to meet these objectives have left significant room for the development of widely applicable inspection and evaluation techniques to accurately and reliably probe new and failed devices on an ever-shrinking length scale. Presented in this study is a framework of correlative, cross-modality microscopy workflows coupled with novel in-situ experimentation and testing, and computational reverse engineering and modeling methods, aimed at addressing the current and future challenges of evaluating micro- and nano-electronic devices. The current challenges are presented through a unique series of micro- and nano-electronic devices from a wide range of applications with ties to industrial relevance. Solutions were reached for the challenges and through the development of these workflows, they were successfully expanded to areas outside the immediate area of the original project. Limitations on techniques and capabilities were noted to contextualize the applicability of these workflows to other current and future challenges

    CSI 2264: Simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer-- evidence for multiple origins of variability

    Get PDF
    Anne Marie Cody, et al, 'CSI 2264: SIMULTANEOUS OPTICAL AND INFRARED LIGHT CURVES OF YOUNG DISK-BEARING STARS IN NGC 2264 WITH CoRoT and SPITZER—EVIDENCE FOR MULTIPLE ORIGINS OF VARIABILITY', The Astronomical Journal, 147:82 (47pp), 2014 April doi:10.1088/0004-6256/147/4/82 © 2014. The American Astronomical Society.We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30-day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes, and assess the fractional representation within each class. The largest category (>20%) are optical "dippers" having discrete fading events lasting ~1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα\alpha emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.Peer reviewe

    Correlative Framework of Techniques for the Inspection, Evaluation, and Design of Micro-electronic Devices

    No full text
    Trillions of micro- and nano-electronic devices are manufactured every year. They service countless electronic systems across a diverse range of applications ranging from civilian, military, and medical sectors. Examples of these devices include: packaged and board-mounted semiconductor devices such as ceramic capacitors, CPUs, GPUs, DSPs, etc., biomedical implantable electrochemical devices such as pacemakers, defibrillators, and neural stimulators, electromechanical sensors such as MEMS/NEMS accelerometers and positioning systems and many others. Though a diverse collection of devices, they are unified by their length scale. Particularly, with respect to the ever-present objectives of device miniaturization and performance improvement. Pressures to meet these objectives have left significant room for the development of widely applicable inspection and evaluation techniques to accurately and reliably probe new and failed devices on an ever-shrinking length scale. Presented in this study is a framework of correlative, cross-modality microscopy workflows coupled with novel in-situ experimentation and testing, and computational reverse engineering and modeling methods, aimed at addressing the current and future challenges of evaluating micro- and nano-electronic devices. The current challenges are presented through a unique series of micro- and nano-electronic devices from a wide range of applications with ties to industrial relevance. Solutions were reached for the challenges and through the development of these workflows, they were successfully expanded to areas outside the immediate area of the original project. Limitations on techniques and capabilities were noted to contextualize the applicability of these workflows to other current and future challenges
    corecore